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Learning Objectives 
(Slide-set 5) 

 
§  Learn the challenges of large scale data persistence 

(“Big-Data”)  
§  Asses how distributed data stores overcome the limits of 

vertical scaling  
§  Understand the practical implication of the CAP theorem 
§  Learn Conceptual differences between NoSQL databases 
§  Asses the effects of different integrity policies 
§  Learn how to develop highly scalable dynamic web-sites 

based on Open-Source technology 



Overview 
(Slide-set 5) 

 
§  Large Scale Data Persistence 
§  Vertical and Horizontal Scalability 
§  CAP Theorem 
§  NoSQL Database Concepts 
§  Redis, Cassandra, MongoDB 
§  Consistency Models of NoSQL Database Systems 
§  NoSQL Data Models and Dynamic Languages 
§  Build Web-Applications with NaviServer and NX based 

on the Business Informer Data Model 



Large-scale Data Persistence 



Classical Databases 

§  Relational Databases, SQL 
 

§  ACID Properties: 
§  Atomicity: every (maybe complex) transaction is executed 

completely (undividable) or not (rollback) 
§  Consistency: Database transactions move database from one 

valid state to the next; no constraints are violated, cascading 
operations are completed, … 

§  Isolation: independence of concurrent transactions, 
serializability (no dirty reads, no non-repeatable reads, no 
phantoms from other transactions) 

§  Durability: when a commit is performed, the data stays 
persistently stored (crash-safety; after commit, data has to be 
saved at the storage medium) 



Scaling and Relational 
Databases 

§  Core asset of relational databases:  
§  ACID Properties 
§  Strong Consistency 

§  State-of-the-Art since many years for single-nodes 
 

§  Problems: 
§  What if a single node cannot keep all data? 
§  How to achieve high availability?  



Vertical and Horizontal Scaling 

§  Vertical Scaling (scale up): 
§  Add more resources to a system (CPUs, cores, memory, 

disks, ….) 

§  Horizontal Scaling (scale out): 
§  Add more nodes (distributed systems) 
§  For databases: 

§  Replication: multiple copies of the same data 
§  Sharding (partitioning): partial data on different nodes 



Replication Patterns 



Multi-Master Replication 

§  Mechanism 
§  Write operations to multiple nodes 
§  Nodes of a cluster are responsible to propagate data other nodes 

§  Consequences 
§  Write becomes horizontally scalable 
§  Needs conflict resolution strategies, otherwise simultaneous writes on 

the same data may lead to inconsistencies 
§  Eager Propagation causes latencies 
§  For high number of nodes, conflict resolution tends to become intractable  
§  Many systems loose ACID properties in trade for performance 



Master-Slave Replication 

§  Mechanism 
§  All write operations are issued to a single node (master) 
§  Master node propagates data to all slaves 
§  Read operations can be issued to multiple nodes (slaves) 

§  Consequences 
§  Only benefits for read operations 
§  Propagation needs synchronization to achieve ACID properties 
§  Large of frequent write operations kill performance 
§  If master is down, no writes are possible 



Sharding (Partitioning) 



Sharding (Partitioning) 

§  Meaning 
§  Store huge data sets across multiple machines 
§  Can handle huge amounts of data that could not be kept on a single 

machine 

§  Consequences 
§  Some parallelization possible (e.g. sequential search) 
§  Smaller indices 
§  Partitioning function has to decide in which shard data is stored 
§  A single query might have to use multiple shards 
§  Application has to be partition aware 
§  If a shard is not available, queries might stall 
§  Referential integrity is hard to achieve 



Sharding and Replicas in 
Elastic Search 



Common Properties of 
Horizontal Scaling 

§  Multiple nodes are involved 

§  Nodes need synchronization and locking 

§  The more nodes involved the more the likelihood of node 
failures increases (e.g. over internet connections) 

§  ACID properties and low latencies are very hard to achieve 



Tradeoff between Consistency 
(ACID) and Availablility (BASE) 

 
§  BASE: 
§  Basically Available 
§  Soft-State 
§  Eventually consistency (after some time consistent) 
 

§  BASE properties: 
§  Weak consistency (stale reads are ok) 
§  Approximate answers are ok 
§  Availability first (best effort, optimistic policies, faster, 

simpler, easier evolution) 



Consistency Models 

 
§  Strong Consistency: After the update completes any subsequent 

access is guaranteed to return the updated value.  
 

§  Weak Consistency: The system does not guarantee that subsequent 
accesses will return the updated value. Typically after some time (the 
inconsistency window) the correct value will be returned.  
 

§  Eventual Consistency: Special form of the weak consistency: The 
storage system guarantees that if no new updates are made to the 
object, eventually all accesses will return the last updated value.  
 
Examples: 
§  DNS (Domain Name System): Updates to a name are distributed according to a 

configured pattern and in combination with time-controlled caches; eventually, all 
clients will see the update.  

§  Asynchronous master/slave replication on an RDBMS (also on MongoDB) 
§  Caching (e.g. in front of a database) with memchached 



Variations of Eventual 
Consistency 

 
§  Causal consistency: If process A has communicated to process B that it has 

updated a data item, a subsequent access by process B will return the updated 
value, and a write is guaranteed to supersede the earlier write. Access by 
process C that has no causal relationship to process A is subject to the normal 
eventual consistency rules.  
 

§  Read-your-writes consistency: This is an important model where process A, 
after it has updated a data item, always accesses the updated value and will 
never see an older value. This is a special case of the causal consistency model. 
 

§  Session consistency: This is a practical version of the previous model, where a 
process accesses the storage system in the context of a session. As long as the 
session exists, the system guarantees read-your-writes consistency. If the 
session terminates because of a certain failure scenario, a new session needs to 
be created and the guarantees do not overlap the sessions. 
 

§  Monotonic read consistency: If a process has seen a particular value for the 
object, any subsequent accesses will never return any previous values. 
 

§  Monotonic write consistency: In this case the system guarantees to serialize 
the writes by the same process. Systems that do not guarantee this level of 
consistency are notoriously hard to program.  



CAP Theorem 

 
§  CAP: 
§  Consistency 
§  Availability 
§  Tolerance to network partitions 

(nodes become unreachable, e.g. network failures) 
 

§  Theorem (Brewer 2000): 
§  One can have at most two of these properties for any 

shared-data system 
§  PODC Keynote 2000 (Principles of Distributed Computing)  
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Network Partitioning 



CAP Scenarios: C + A + P 

A B 

     

Data Data 

Consistent and available 
No partition. 

App 



CAP Scenarios: A + P 

A B 

     

Data Old Data 

Available and partitioned 
Not consistent, we get back old data. 

App 



CAP Scenarios: C + P 

A B 

     

New Data 
Wait for new data 

Consistent and partitioned 
Not available, waiting… 

App 
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Systems Achieving only C + A 
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Systems Achieving only C + P 
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Systems Achieving only A + P 
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§  Since relational databases theory (and SQL) requires ACID 
properties, the CAP theorem caused and advent (or revival) of 
NoSQL databases 

§  NoSQL Databases sacrifice strong consistency for availability when 
multiple replicas are involved 

 
 
 
 

NoSQL Databases 
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§  3 main groups: 
§  Key-value Databases 

Examples: Memcached, Redis, Tokyo Cabinet, Dynamo 
 

§  Column-oriented Databases 
Examples: BigTable, Cassandra, HBase 

 

§  Document Databases 
Examples: MongoDB, CouchDB 

 

NoSQL Databases 
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DB Engines Ranking 

  
 

Ranking based on web sites, Google Trends, technical discussions 
(stack overflow), job offers, job profiles) 
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DB Engines Ranking 

  
 

Ranking based on web sites, Google Trends, technical discussions 
(stack overflow), job offers, job profiles) 



30 

DB Engines Ranking (Trend) 

  
 



Redis 

§  Redis is an key-value data store 

§  Redis stores in its values not only strings, but as 
well data structures such as lists, hashes, sets, 
and sorted sets 

§  Redis works with an in-memory dataset 

§  It is possible to persist dataset either by  
§  dumping the dataset to disk every once in a while (e.g. 

after some seconds, after some changes) 
§  or by appending each command to a log 

§  Popular e.g. for caching values 



Redis Keys and Values 

§  Keys 
§  Keys are binary safe - it is possible to use  

any binary sequence as a key 

§  The empty string is also a valid key 

 

§  A nice idea is to use some kind of schema, like:  
"object-type:id:field” 
 

§  Values 
§  Built-in operations for data structures such as: 

Lists: „LPUSH list:xxx a“ 
§  Hashes: „HMSET user:123 username gn password foo” 

(similar to dicts in Tcl)  
§  Caching: GET returns ““ if value does not exist,  
SETNX (set value, if it does not exist) 



Cassandra 

§  Originally developed at Facebook  
in 2007 

§  Combines Google’s BigTable (2004) 
data model with Amazon’s Dynamo (2006) 

§  Column-oriented 
§  Multi-Master replication 
§  Became Apache Incubator project in 2009 
§  Written in Java 
§  Uses Apache Thrift as API 



Cassandra Data Model 

§  Similar to relational model, but: 
§  No schema necessary, columns can be added to rows, columns can 

vary per row 

§  Columns are grouped into column families 
§  Similar to tables, allow for separate storage, vertical partitioning  

§  Columns can be “super columns” (somewhat deprecated in 2012) 
§  Keyspaces group column families together, base for replication  

(similar to “database”) 



Cassandra and Consistency 

§  Cassandra has programmable read/writable 
consistency 
 
§  Writes are sent to all replicas in parallel 

 
§  Developer can choose to  

read from R replicas and  
wait for W acks for writes 
 

§  R and W can be tuned for  
latency/consistency requirements 



Cassandra Basic AP  
and Query Language 

§  Basic API (examples, … actually many APIs) 
§  get_column() / now GetColumn()
§  get_slice(keyspace, key, startColumn, acs/desc, 
count)

§  Efficient row/column index support 
§  Using RPC (Thrift, Avro)   

 
§  CQL – Cassandra query language (0.8, 2011)  
§  High-level, similar to SQL, (e.g. “select”, but “update” 

instead of “insert”) 
§  Subset of “classical” SQL + extensions for Cassandra 

features (column families, keyspaces, TTL, ….) 
§  Since Cassandra 1.2, CQL is preferred interface. 



  

§  Developed by company 10gen, Founded in 2007, Open Source 
 

§  Document-oriented, schema-less: 
§  Tree structure 
§  Supports nesting 

 

§  High Performance 
 

§  Consistency might be strict or eventually consistent depending on options in 
asynchronous master/slave replication 

§  Infrastructure support (to reduce maintenance support) for  
§  Replication & High Availability (automatic failover) 
§  Sharding (auto-sharding) 

§  Written in C++ 



                        Replication 

§  Replica set:  
Group of instances 
 

§  Primary:  
Receives all write operations  
(like master-slave), strict 
consistency on primary 
 

§  Secondaries:  
receive/apply operation-log  
of primary, identical  
data 
 



                        Replication 

§  Secondaries:  
§  Default: clients read from primary, can be altered via read 

preferences 

§  When primary becomes unavailable, they elect a new one 



                       Automatic 
                       Failover 

  



                       Sharding 

§  Sharding:  
§  store data across multiple machines. 
§  divides the data set and distributes the data over 

multiple servers, or shards.  
§  Each shard is an independent database, and 

collectively, the shards make up a single logical 
database. 
 

§  MongoDB uses sharding to support 
deployments with very large data sets and high 
throughput operations. 

 



                       Sharding 

  

Collection: similar 
to TABLE or VIEW 
in relational 
database systems 



                       Sharding and 
                       Replica Sets 

  
Query Router:  
Direct query to shard 
 
Shards: for high  
availability, shards  
should be replica sets 
 
For development:  
a shard can be a  
single mongod. 
 
For production:  
clusters with 3  
config servers + 
replica sets 



                       Range-based 
                       Partitioning  

  

•  Define application specific, non overlapping ranges to distribute data 
to different chunks (which might exist in different shards) 

•  Similar values are kept in the same shard (good for range-queries) 
 



                       Hash-based 
                       Partitioning  

  

•  Hash value is used for partitioning -> even distribution of values 
•  Range-based partitioning is better for range-queries, but may lead 

to uneven shard populations 
 



                       Shard Splitting 

  

•  When data is added, shard populations can become unbalanced. 
•  Splitter: background process, splits chunks when size is exceeded 
•  Splitter does not migrate between shards 
 



                       Shard Migration 

  

•  Balancer: background process to manager chunk migration, runs 
in query routers 

•  Chunks are migrated from the shard that has the largest  
number of chunks to the shard with the least number of chunks  
until the collection balances 

 



Configurable Write Concerns 

§  Write Concern: defines what MongoDB guarantees when reporting the success of a write 
operation (insert, update, delete) 
 

§  Determine the level of guarantee:  
§  Weak write concern leads to better performance,  

§  strong write concern leads to higher reliability 

§  MongoDB provides different levels of write concerns to better address the specific needs of 
applications, level of guarantee can be specified up to single database operations 

§  Configurable write concerns 
§  Unacknowledged (written to the socket) 
§  Acknowledged (use default write concern) 
§  Journaled (commit to disk) 

§  Majority 
§  W1, W2, W3 

 

§  Also: Configurable read preferences 
 



                       Write Concern: 
                       Unacknowledged 

  

•  Driver: Interface of application program to MongoDB 
•  Write Concern Unacknowledged:  

Submit write operation and continue in application program 
while database stores and distributes values. 

Application 
program 

Database 



                       Write Concern: 
                       Acknowledged 

  

•  Write Concern Acknowledged:  
Application program submits “getLastError“ with “w” set to “1” 

•  MongoDB confirms the receipt of the write operation.  
•  Allows clients to catch network, duplicate key, and other errors 



                       Write Concern: 
                       Journaled 

  

•  Write Concern Journaled:  
Application program submits “getLastError“ with “j” set to “1” 

•  “Write to journal” -> data written to the disk 
•  MongoDB can recover from a power interruption without loosing 

this data 



                     Write Concern: 
                           Replica Acknowledged 

  •  Write Concern  
Replica Acknowledged:  
Application program submits  
“getLastError“ with  
“w” set to “2” 
 

•  Wait for the acknowledge of 
at least one secondary 

•  Other values for “w”: 
•  3, 4 … 
•  majority

•  getLastError can also turn on 
•  fsync
•  wtimeout



Connection String URI Format 
(Setting Default Preferences) 

§  Write concerns and read preferences can be defined programmatically, and/or via special URI format used 
when connectiong from an application to the mongodb server. 
 
mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

§  Replica Set with Members on localhost 
Connect to a replica set with three members running on localhost on ports 27017, 27018, and 27019: 
mongodb://localhost,localhost:27018,localhost:27019

§  Replica Set with Read Distribution 
Connect to a replica set with three members and distributes reads to secondary servers: 
mongodb://example1.com,example2.com,example3.com/?readPreference=secondary

§  Replica Set with a High Level of Write Concern 
Connects to a replica set with write concern configured to wait for replication to succeed on at least two 
members, with a two-second timeout. 
mongodb://example1.com,example2.com,example3.com/?w=2&wtimeoutMS=2000

 



MongoDB Data Structures and 
Queries  



                       Document 

  

•  Data is stored in documents (similar to a tuple in an RDBMS) 
•  Document are JSON-like data structure with field and value pairs 

(tree structure) 
•  JSON: JavaScript Object Notation 
•  MongoDB uses BSON (binary „JSON“) with various data types 
•  MongoDB supports multivalued attributes (here: “groups”) 



                       Collection 

  

•  Collection: Multiple documents of same kind 
•  Documents use same indices 
•  Comparable to a TABLE in relational database systems 
•  Creation: db.createCollection(”users”)



CRUD API  
(here in JavaScript syntax) 

§  Create (data) 
§  db.collection.insert( <document> )  
§  db.collection.save( <document> ) 
§  db.collection.update( <query>, <update>, { upsert:true } )  

§  Read 
§  db.collection.find( <query>, <projection> )
§  db.collection.findOne( <query>, <projection> )  

 
§  Update 

§  db.collection.update( <query>, <update>, <options> )  
 

§  Delete 
§  db.collection.remove( <query>, <justOne> )  

§  „Upsert”: insert or update in one operation 



                       Query 

  

•  Query, Data, and Result in form of a BSON document,  
similar to JSON (JavaScript Object Notation) 
 

•  MongoDB Operators: reserved words, starting with “$” 



                       BSON 

  

•  BSON: Abbreviation of Binary JSON 
•  Data Structure is a tree structured document with potentially 

multivalued-attributes (arrays) 
•  Allows compact representation and efficient operations  

(e.g. sort by date, using internal ordinal representation rather 
than strings) 

•  Data types: UTF-8-Strings, 32- und 64-bit-integer, float,  
date, Boolean, NULL value, ObjectId, UUID, MD5, … 

•  Here: Query in JavaScript syntax (mongo shell) 
•  Binding for various programming languages 



                       Multi-valued  
                       Attributes 

  

•  First class data-type, can be used e.g. for full-text search 
 

•  Index support for efficient access to multi valued attributes 
 

•  Atomic operations for maintaining multi-valued attributes in  
update operations: $push, $addToSet, $each, $slice, $sort, …  

db.users.update( { name: ”sue" }, { $push: { groups: “wu” }})



                       Document 
                       References 

  

•  MongoDB maintains per document an object ID “_id” 
•  ID can be used as field value (no guarantee of  

referential integrity) 



                       Embedding 
                       Documents 

  

•  Embedding in “user” document: “contact” and “access”  
documents  



                       Aggregation 

  Operators: 
-  $match,  

$group,  
$sum  

Placeholders: 
-  $cust_id,  

$amount



Map-Reduce 

§  Programming paradigm for aggregation/summarizing  
 

§  Allows for massive scalability across hundreds or thousands of servers 
through parallelization 
 

§  Name inspired from functional programming 
 

§  Introduced by Google 2004 for large-scale indexing 
(Google patent in 2010; novelty challenged) 
 

§  Open-Source implementations (after Google article):  
Hadoop, Phoenix, … 
 

§  2 Phases: 
§  Map: filtering, sorting, projecting of data 
§  Reduce: summarizer 



Map-Reduce 

  
 

Multiple workers 
for map and reduce  
phases 



                       Map-Reduce 

  



Implementing a Web-App with 
MongoDB and NX 



Example: Business Insider 

§  One of the largest growing professional news sites  
(claimed by businessinsider.com) 

§  Blog-like data model: 

§  { title: ‘Too Big to Fail’,  
  author: ‘John S’,  
  ts: Date(“05-Nov-09 10:33”),  
  comments: [ { author: 'Ian White',  
                 comment: 'Great article!' },  
               { author: 'Joe Smith',  
                 comment: 'But how fast is it?',  
                 replies: [ {author: 'Jane Smith',  
                              comment: 'scalable?' } ]                   
               } ],  
  tags: [‘finance’, ‘economy’]  
}  

§  From Dwight Merriman, founder of 10gen: 
http://www.slideshare.net/mongodb/nosql-the-shift-to-a-nonrelational-world 

Gustaf Neumann




Business Insider as  
(Simplified) Relational Model 

§  5 tables 

§  Complex referential structure 
 

§  Query requires several join 
operations over potentially 
huge tables (which are maybe 
stored on different nodes) 

§  Update of one logical entry 
requires locks 

 

Postings ID Title Author ts

223117 Too Big To Fail John S 05-Nov-09 
10:33

Comments ID Comment Author entry_id

112456 Great article! Jan White 223117

112457 But how fast is it? Joe Smith 223117

112458 scalable? Jane Smith 112457

Tags posting_id Tag

223117 finance

223117 econonmy

Entries entry_id

223117

112456

112457

112458

Replies entry_id

112458
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################## Data Model ################

nx::mongo::Class create ::bi::Comment {
:property author:required
:property comment:required 
:property -incremental replies:embedded,type=::bi::Comment,0..n

}
    
nx::mongo::Class create ::bi::Posting {

:index tags
:property title:required
:property author:required
:property ts:required
:property -incremental comments:embedded,type=::bi::Comment,0..n
:property -incremental {tags:0..n ""}

}

Type spec for property in nx::Class can be “embedded” or “reference”,  
multiplicity: “0..1”, “0..n”, “1..1”, “1..n” 

Business Insider Data Model  
for MongoDB in NX 



Simplified Relational Model 

§  Mapping Layer 
§  nx::mongo::Object

§  nx::mongo::Class

§  Application classes for 
Data to be stored in 
MongoDB 
§  Classes created via 

nx::mongo::Class

§  MongoDB classes create 
MongoDB objects 

§  Objects inherit from 
nx::mongo::Object

author
comment
replies

Comment
author
title
ts
comments
tags

Posting

save
delete

nx::mongo::Object

template set
template eval

nx::Object

create
property

nx::Class

create
property
count
index
find first
find all
...

nx::mongo::Class



Object oriented CRUD API  
in NX (simplified) 

§  Create 
§  nx::mongo::Object save  

§  Read 
§  nx::mongo::Class find first ... 
§  nx::mongo::Class find all ...  

§  Update 
§  nx::mongo::Object save

§  Delete 
§  nx::mongo::Object delete
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# ... Source data-model if outside of NaviServer

# Connect to the database 

::nx::mongo::db connect -db "tutorial”

# Create a nested object, like every other nx object

set p [Posting new \

       -title "Too Big to Fail” -author "John S.” -ts "05-Nov-09 10:33" \ 

       -tags {finance economy} \

    -comments [list \

    [Comment new -author "Walter White" -comment "Great Article!"] \

    [Comment new -author "Joe Smith" -comment "But how fast is it?" \

       -replies [list [Comment new -author "Jane Smith" –comment "scalable?"]]] \

    ]]

# Save in MongoDB

$p save

Sample MongoDB  
Interactions 1: Insert 



Sample MongoDB  
Interactions 2: Query and Update 

# ... Source data-model if outside of NaviServer ...

# Connect to MongoDB

nx::mongo::db connect –db tutorial

# Count entries having “finance” as a tag, result is 1 with sample DB

Posting count -cond {tags = finance}

# OO update: Fetch posting from MongoDB as object, update it, and save it

set p [Posting find first -cond {tags = finance}]

$p tags add wi

$p save

# Optional: Lower level interface using triples to map BSON structures to Tcl lists

# {tags: ”finance”, { $addToSet: { tags: “wu” }}}

nx::mongo::db update "tutorial.postings" \

   {tags string finance} \

   {$addToSet object {tags string wu}}

# show updated value

Posting count -cond {tags = wu}
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Desired View 

§  Display all Postings with tags, comments and 
replies using nested HTML lists: 
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 ::nx::mongo::db connect -db "tutorial”
 . . .
 if {[Posting count] > 0} {

    # Build result object containing the instance variable :postings,
    # which is a list of objects:
    set result [nx::Object new {
      set :postings [Posting find all -orderby ts]
    }]

    # Set template for result, iterating over the postings with FOREACH
    $result template set {
      Postings: <ul><FOREACH var='p' in=':postings' type='list'><li>@p;obj@<p></li>
      </FOREACH></ul>
    }

    # Obtain the rendered HTML output
    set html [$result template eval]
}

Counting entries, obtaining all 
values, rendering output 
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# 
# Default templates
#
Posting template set {
  @:ts@: <b>@:author@</b> posts: <em>@:title@</em> <br>
  <ul><FOREACH var='c' in=':comments' type='list'><li>@c;obj@</li>
  </FOREACH></ul>
  tags: @:tags@<br>
}

Comment template set {
  <b>@:author@</b> comments: <em>'@:comment@'</em>
  <ul><FOREACH var='r' in=':replies' type='list'>  

  <li>reply: @r;obj@</li>  
</FOREACH></ul>

}}

Templates for  
“Posting” and “Comment” 



Program Examples 

§  Copy 
 
   mongo-*.tcl  
 
into  
 
   /usr/local/ns/pages/  

§  and 
 
   oo-templating.tcl  
   bi.tcl  
 
into 
 
   /usr/local/ns/modules/tcl/ 

 
§  Make sure “mongod” is running; restart NaviServer 

§  Try out in from a browser 
 

http://localhost:8080/mongo-setup.tcl  
 
and look into the page source 



Review of mongo-*.tcl 

§  Good: 
§  Preserved all “good” properties from last examples 
§  High-speed database access and persistence 
§  MongoDB is fully compliant with the dynamic object model of 

XOTcl, NX 
§  Uses MongoDB specific connection pooling  
§  Timings quite good, study where time is spent on page  
http://localhost:8080/mongo-edit.tcl 

§  Limitations: 
§  No language support for configurable write concerns  

(just via connection URI) 
§  Many details can be improved (e.g. nicer editing, etc.) 



Project Assignment 

•  Turn Business Informer example implementation in 
NX into a “query and answer” application (specialized 
Forum) 
•  Start from business informer data model and files 
•  Use problem-specific names (adp-files, data model) 
•  Use features such as tags, ratings, up-voting to implement 

social feedback (let you inspire by stackoverflow.com) 
•  Bootstrap Interface 
•  Add User-management with cookies (using ns_cookie, 

http://naviserver.sourceforge.net/n/naviserver/files/ns_cookie.html ) 
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