
Object oriented Development of
Distributed Applications
(Slide-set 5)
Gustaf Neumann
Information Systems and New Media

2

Learning Objectives
(Slide-set 5)

§  Learn the challenges of large scale data persistence

(“Big-Data”)
§  Asses how distributed data stores overcome the limits of

vertical scaling
§  Understand the practical implication of the CAP theorem
§  Learn Conceptual differences between NoSQL databases
§  Asses the effects of different integrity policies
§  Learn how to develop highly scalable dynamic web-sites

based on Open-Source technology

Overview
(Slide-set 5)

§  Large Scale Data Persistence
§  Vertical and Horizontal Scalability
§  CAP Theorem
§  NoSQL Database Concepts
§  Redis, Cassandra, MongoDB
§  Consistency Models of NoSQL Database Systems
§  NoSQL Data Models and Dynamic Languages
§  Build Web-Applications with NaviServer and NX based

on the Business Informer Data Model

Large-scale Data Persistence

Classical Databases

§  Relational Databases, SQL

§  ACID Properties:
§  Atomicity: every (maybe complex) transaction is executed

completely (undividable) or not (rollback)
§  Consistency: Database transactions move database from one

valid state to the next; no constraints are violated, cascading
operations are completed, …

§  Isolation: independence of concurrent transactions,
serializability (no dirty reads, no non-repeatable reads, no
phantoms from other transactions)

§  Durability: when a commit is performed, the data stays
persistently stored (crash-safety; after commit, data has to be
saved at the storage medium)

Scaling and Relational
Databases

§  Core asset of relational databases:
§  ACID Properties
§  Strong Consistency

§  State-of-the-Art since many years for single-nodes

§  Problems:
§  What if a single node cannot keep all data?
§  How to achieve high availability?

Vertical and Horizontal Scaling

§  Vertical Scaling (scale up):
§  Add more resources to a system (CPUs, cores, memory,

disks, ….)

§  Horizontal Scaling (scale out):
§  Add more nodes (distributed systems)
§  For databases:

§  Replication: multiple copies of the same data
§  Sharding (partitioning): partial data on different nodes

Replication Patterns

Multi-Master Replication

§  Mechanism
§  Write operations to multiple nodes
§  Nodes of a cluster are responsible to propagate data other nodes

§  Consequences
§  Write becomes horizontally scalable
§  Needs conflict resolution strategies, otherwise simultaneous writes on

the same data may lead to inconsistencies
§  Eager Propagation causes latencies
§  For high number of nodes, conflict resolution tends to become intractable
§  Many systems loose ACID properties in trade for performance

Master-Slave Replication

§  Mechanism
§  All write operations are issued to a single node (master)
§  Master node propagates data to all slaves
§  Read operations can be issued to multiple nodes (slaves)

§  Consequences
§  Only benefits for read operations
§  Propagation needs synchronization to achieve ACID properties
§  Large of frequent write operations kill performance
§  If master is down, no writes are possible

Sharding (Partitioning)

Sharding (Partitioning)

§  Meaning
§  Store huge data sets across multiple machines
§  Can handle huge amounts of data that could not be kept on a single

machine

§  Consequences
§  Some parallelization possible (e.g. sequential search)
§  Smaller indices
§  Partitioning function has to decide in which shard data is stored
§  A single query might have to use multiple shards
§  Application has to be partition aware
§  If a shard is not available, queries might stall
§  Referential integrity is hard to achieve

Sharding and Replicas in
Elastic Search

Common Properties of
Horizontal Scaling

§  Multiple nodes are involved

§  Nodes need synchronization and locking

§  The more nodes involved the more the likelihood of node
failures increases (e.g. over internet connections)

§  ACID properties and low latencies are very hard to achieve

Tradeoff between Consistency
(ACID) and Availablility (BASE)

§  BASE:
§  Basically Available
§  Soft-State
§  Eventually consistency (after some time consistent)

§  BASE properties:
§  Weak consistency (stale reads are ok)
§  Approximate answers are ok
§  Availability first (best effort, optimistic policies, faster,

simpler, easier evolution)

Consistency Models

§  Strong Consistency: After the update completes any subsequent

access is guaranteed to return the updated value.

§  Weak Consistency: The system does not guarantee that subsequent
accesses will return the updated value. Typically after some time (the
inconsistency window) the correct value will be returned.

§  Eventual Consistency: Special form of the weak consistency: The
storage system guarantees that if no new updates are made to the
object, eventually all accesses will return the last updated value.

Examples:
§  DNS (Domain Name System): Updates to a name are distributed according to a

configured pattern and in combination with time-controlled caches; eventually, all
clients will see the update.

§  Asynchronous master/slave replication on an RDBMS (also on MongoDB)
§  Caching (e.g. in front of a database) with memchached

Variations of Eventual
Consistency

§  Causal consistency: If process A has communicated to process B that it has

updated a data item, a subsequent access by process B will return the updated
value, and a write is guaranteed to supersede the earlier write. Access by
process C that has no causal relationship to process A is subject to the normal
eventual consistency rules.

§  Read-your-writes consistency: This is an important model where process A,
after it has updated a data item, always accesses the updated value and will
never see an older value. This is a special case of the causal consistency model.

§  Session consistency: This is a practical version of the previous model, where a
process accesses the storage system in the context of a session. As long as the
session exists, the system guarantees read-your-writes consistency. If the
session terminates because of a certain failure scenario, a new session needs to
be created and the guarantees do not overlap the sessions.

§  Monotonic read consistency: If a process has seen a particular value for the
object, any subsequent accesses will never return any previous values.

§  Monotonic write consistency: In this case the system guarantees to serialize
the writes by the same process. Systems that do not guarantee this level of
consistency are notoriously hard to program.

CAP Theorem

§  CAP:
§  Consistency
§  Availability
§  Tolerance to network partitions

(nodes become unreachable, e.g. network failures)

§  Theorem (Brewer 2000):
§  One can have at most two of these properties for any

shared-data system
§  PODC Keynote 2000 (Principles of Distributed Computing)

19

Network Partitioning

CAP Scenarios: C + A + P

A B

Data Data

Consistent and available
No partition.

App

CAP Scenarios: A + P

A B

Data Old Data

Available and partitioned
Not consistent, we get back old data.

App

CAP Scenarios: C + P

A B

New Data
Wait for new data

Consistent and partitioned
Not available, waiting…

App

23

Systems Achieving only C + A

24

Systems Achieving only C + P

25

Systems Achieving only A + P

26

§  Since relational databases theory (and SQL) requires ACID
properties, the CAP theorem caused and advent (or revival) of
NoSQL databases

§  NoSQL Databases sacrifice strong consistency for availability when
multiple replicas are involved

NoSQL Databases

27

§  3 main groups:
§  Key-value Databases

Examples: Memcached, Redis, Tokyo Cabinet, Dynamo

§  Column-oriented Databases
Examples: BigTable, Cassandra, HBase

§  Document Databases
Examples: MongoDB, CouchDB

NoSQL Databases

28

DB Engines Ranking

Ranking based on web sites, Google Trends, technical discussions
(stack overflow), job offers, job profiles)

29

DB Engines Ranking

Ranking based on web sites, Google Trends, technical discussions
(stack overflow), job offers, job profiles)

30

DB Engines Ranking (Trend)

Redis

§  Redis is an key-value data store

§  Redis stores in its values not only strings, but as
well data structures such as lists, hashes, sets,
and sorted sets

§  Redis works with an in-memory dataset

§  It is possible to persist dataset either by
§  dumping the dataset to disk every once in a while (e.g.

after some seconds, after some changes)
§  or by appending each command to a log

§  Popular e.g. for caching values

Redis Keys and Values

§  Keys
§  Keys are binary safe - it is possible to use

any binary sequence as a key

§  The empty string is also a valid key

§  A nice idea is to use some kind of schema, like:
"object-type:id:field”

§  Values
§  Built-in operations for data structures such as:

Lists: „LPUSH list:xxx a“
§  Hashes: „HMSET user:123 username gn password foo”

(similar to dicts in Tcl)
§  Caching: GET returns ““ if value does not exist,
SETNX (set value, if it does not exist)

Cassandra

§  Originally developed at Facebook
in 2007

§  Combines Google’s BigTable (2004)
data model with Amazon’s Dynamo (2006)

§  Column-oriented
§  Multi-Master replication
§  Became Apache Incubator project in 2009
§  Written in Java
§  Uses Apache Thrift as API

Cassandra Data Model

§  Similar to relational model, but:
§  No schema necessary, columns can be added to rows, columns can

vary per row

§  Columns are grouped into column families
§  Similar to tables, allow for separate storage, vertical partitioning

§  Columns can be “super columns” (somewhat deprecated in 2012)
§  Keyspaces group column families together, base for replication

(similar to “database”)

Cassandra and Consistency

§  Cassandra has programmable read/writable
consistency

§  Writes are sent to all replicas in parallel

§  Developer can choose to

read from R replicas and
wait for W acks for writes

§  R and W can be tuned for
latency/consistency requirements

Cassandra Basic AP
and Query Language

§  Basic API (examples, … actually many APIs)
§  get_column() / now GetColumn()
§  get_slice(keyspace, key, startColumn, acs/desc,
count)

§  Efficient row/column index support
§  Using RPC (Thrift, Avro)

§  CQL – Cassandra query language (0.8, 2011)
§  High-level, similar to SQL, (e.g. “select”, but “update”

instead of “insert”)
§  Subset of “classical” SQL + extensions for Cassandra

features (column families, keyspaces, TTL, ….)
§  Since Cassandra 1.2, CQL is preferred interface.

§  Developed by company 10gen, Founded in 2007, Open Source

§  Document-oriented, schema-less:
§  Tree structure
§  Supports nesting

§  High Performance

§  Consistency might be strict or eventually consistent depending on options in
asynchronous master/slave replication

§  Infrastructure support (to reduce maintenance support) for
§  Replication & High Availability (automatic failover)
§  Sharding (auto-sharding)

§  Written in C++

 Replication

§  Replica set:
Group of instances

§  Primary:
Receives all write operations
(like master-slave), strict
consistency on primary

§  Secondaries:
receive/apply operation-log
of primary, identical
data

 Replication

§  Secondaries:
§  Default: clients read from primary, can be altered via read

preferences

§  When primary becomes unavailable, they elect a new one

 Automatic
 Failover

 Sharding

§  Sharding:
§  store data across multiple machines.
§  divides the data set and distributes the data over

multiple servers, or shards.
§  Each shard is an independent database, and

collectively, the shards make up a single logical
database.

§  MongoDB uses sharding to support
deployments with very large data sets and high
throughput operations.

 Sharding

Collection: similar
to TABLE or VIEW
in relational
database systems

 Sharding and
 Replica Sets

Query Router:
Direct query to shard

Shards: for high
availability, shards
should be replica sets

For development:
a shard can be a
single mongod.

For production:
clusters with 3
config servers +
replica sets

 Range-based
 Partitioning

•  Define application specific, non overlapping ranges to distribute data
to different chunks (which might exist in different shards)

•  Similar values are kept in the same shard (good for range-queries)

 Hash-based
 Partitioning

•  Hash value is used for partitioning -> even distribution of values
•  Range-based partitioning is better for range-queries, but may lead

to uneven shard populations

 Shard Splitting

•  When data is added, shard populations can become unbalanced.
•  Splitter: background process, splits chunks when size is exceeded
•  Splitter does not migrate between shards

 Shard Migration

•  Balancer: background process to manager chunk migration, runs
in query routers

•  Chunks are migrated from the shard that has the largest
number of chunks to the shard with the least number of chunks
until the collection balances

Configurable Write Concerns

§  Write Concern: defines what MongoDB guarantees when reporting the success of a write
operation (insert, update, delete)

§  Determine the level of guarantee:
§  Weak write concern leads to better performance,

§  strong write concern leads to higher reliability

§  MongoDB provides different levels of write concerns to better address the specific needs of
applications, level of guarantee can be specified up to single database operations

§  Configurable write concerns
§  Unacknowledged (written to the socket)
§  Acknowledged (use default write concern)
§  Journaled (commit to disk)

§  Majority
§  W1, W2, W3

§  Also: Configurable read preferences

 Write Concern:
 Unacknowledged

•  Driver: Interface of application program to MongoDB
•  Write Concern Unacknowledged:

Submit write operation and continue in application program
while database stores and distributes values.

Application
program

Database

 Write Concern:
 Acknowledged

•  Write Concern Acknowledged:
Application program submits “getLastError“ with “w” set to “1”

•  MongoDB confirms the receipt of the write operation.
•  Allows clients to catch network, duplicate key, and other errors

 Write Concern:
 Journaled

•  Write Concern Journaled:
Application program submits “getLastError“ with “j” set to “1”

•  “Write to journal” -> data written to the disk
•  MongoDB can recover from a power interruption without loosing

this data

 Write Concern:
 Replica Acknowledged

 •  Write Concern
Replica Acknowledged:
Application program submits
“getLastError“ with
“w” set to “2”

•  Wait for the acknowledge of
at least one secondary

•  Other values for “w”:
•  3, 4 …
•  majority

•  getLastError can also turn on
•  fsync
•  wtimeout

Connection String URI Format
(Setting Default Preferences)

§  Write concerns and read preferences can be defined programmatically, and/or via special URI format used
when connectiong from an application to the mongodb server.

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

§  Replica Set with Members on localhost
Connect to a replica set with three members running on localhost on ports 27017, 27018, and 27019:
mongodb://localhost,localhost:27018,localhost:27019

§  Replica Set with Read Distribution
Connect to a replica set with three members and distributes reads to secondary servers:
mongodb://example1.com,example2.com,example3.com/?readPreference=secondary

§  Replica Set with a High Level of Write Concern
Connects to a replica set with write concern configured to wait for replication to succeed on at least two
members, with a two-second timeout.
mongodb://example1.com,example2.com,example3.com/?w=2&wtimeoutMS=2000

MongoDB Data Structures and
Queries

 Document

•  Data is stored in documents (similar to a tuple in an RDBMS)
•  Document are JSON-like data structure with field and value pairs

(tree structure)
•  JSON: JavaScript Object Notation
•  MongoDB uses BSON (binary „JSON“) with various data types
•  MongoDB supports multivalued attributes (here: “groups”)

 Collection

•  Collection: Multiple documents of same kind
•  Documents use same indices
•  Comparable to a TABLE in relational database systems
•  Creation: db.createCollection(”users”)

CRUD API
(here in JavaScript syntax)

§  Create (data)
§  db.collection.insert(<document>)
§  db.collection.save(<document>)
§  db.collection.update(<query>, <update>, { upsert:true })  

§  Read
§  db.collection.find(<query>, <projection>)
§  db.collection.findOne(<query>, <projection>)  

§  Update

§  db.collection.update(<query>, <update>, <options>)  

§  Delete
§  db.collection.remove(<query>, <justOne>)  

§  „Upsert”: insert or update in one operation

 Query

•  Query, Data, and Result in form of a BSON document,
similar to JSON (JavaScript Object Notation)

•  MongoDB Operators: reserved words, starting with “$”

 BSON

•  BSON: Abbreviation of Binary JSON
•  Data Structure is a tree structured document with potentially

multivalued-attributes (arrays)
•  Allows compact representation and efficient operations

(e.g. sort by date, using internal ordinal representation rather
than strings)

•  Data types: UTF-8-Strings, 32- und 64-bit-integer, float,
date, Boolean, NULL value, ObjectId, UUID, MD5, …

•  Here: Query in JavaScript syntax (mongo shell)
•  Binding for various programming languages

 Multi-valued
 Attributes

•  First class data-type, can be used e.g. for full-text search

•  Index support for efficient access to multi valued attributes

•  Atomic operations for maintaining multi-valued attributes in
update operations: $push, $addToSet, $each, $slice, $sort, …

db.users.update({ name: ”sue" }, { $push: { groups: “wu” }})

 Document
 References

•  MongoDB maintains per document an object ID “_id”
•  ID can be used as field value (no guarantee of

referential integrity)

 Embedding
 Documents

•  Embedding in “user” document: “contact” and “access”
documents

 Aggregation

 Operators:
-  $match,  

$group,  
$sum  

Placeholders:
-  $cust_id,  

$amount

Map-Reduce

§  Programming paradigm for aggregation/summarizing

§  Allows for massive scalability across hundreds or thousands of servers
through parallelization

§  Name inspired from functional programming

§  Introduced by Google 2004 for large-scale indexing
(Google patent in 2010; novelty challenged)

§  Open-Source implementations (after Google article):
Hadoop, Phoenix, …

§  2 Phases:
§  Map: filtering, sorting, projecting of data
§  Reduce: summarizer

Map-Reduce

Multiple workers
for map and reduce
phases

 Map-Reduce

Implementing a Web-App with
MongoDB and NX

Example: Business Insider

§  One of the largest growing professional news sites
(claimed by businessinsider.com)

§  Blog-like data model:

§  { title: ‘Too Big to Fail’,  
 author: ‘John S’,  
 ts: Date(“05-Nov-09 10:33”),  
 comments: [{ author: 'Ian White',  
 comment: 'Great article!' },  
 { author: 'Joe Smith',  
 comment: 'But how fast is it?',  
 replies: [{author: 'Jane Smith',  
 comment: 'scalable?' }]  
 }],  
 tags: [‘finance’, ‘economy’]  
}  

§  From Dwight Merriman, founder of 10gen:
http://www.slideshare.net/mongodb/nosql-the-shift-to-a-nonrelational-world

Gustaf Neumann

Business Insider as
(Simplified) Relational Model

§  5 tables

§  Complex referential structure

§  Query requires several join
operations over potentially
huge tables (which are maybe
stored on different nodes)

§  Update of one logical entry
requires locks

Postings ID Title Author ts

223117 Too Big To Fail John S 05-Nov-09
10:33

Comments ID Comment Author entry_id

112456 Great article! Jan White 223117

112457 But how fast is it? Joe Smith 223117

112458 scalable? Jane Smith 112457

Tags posting_id Tag

223117 finance

223117 econonmy

Entries entry_id

223117

112456

112457

112458

Replies entry_id

112458

70

################## Data Model ################

nx::mongo::Class create ::bi::Comment {
:property author:required
:property comment:required
:property -incremental replies:embedded,type=::bi::Comment,0..n

}

nx::mongo::Class create ::bi::Posting {

:index tags
:property title:required
:property author:required
:property ts:required
:property -incremental comments:embedded,type=::bi::Comment,0..n
:property -incremental {tags:0..n ""}

}

Type spec for property in nx::Class can be “embedded” or “reference”,
multiplicity: “0..1”, “0..n”, “1..1”, “1..n”

Business Insider Data Model
for MongoDB in NX

Simplified Relational Model

§  Mapping Layer
§  nx::mongo::Object

§  nx::mongo::Class

§  Application classes for
Data to be stored in
MongoDB
§  Classes created via

nx::mongo::Class

§  MongoDB classes create
MongoDB objects

§  Objects inherit from
nx::mongo::Object

author
comment
replies

Comment
author
title
ts
comments
tags

Posting

save
delete

nx::mongo::Object

template set
template eval

nx::Object

create
property

nx::Class

create
property
count
index
find first
find all
...

nx::mongo::Class

Object oriented CRUD API
in NX (simplified)

§  Create
§  nx::mongo::Object save  

§  Read
§  nx::mongo::Class find first ...
§  nx::mongo::Class find all ...

§  Update
§  nx::mongo::Object save

§  Delete
§  nx::mongo::Object delete

73

... Source data-model if outside of NaviServer

Connect to the database

::nx::mongo::db connect -db "tutorial”

Create a nested object, like every other nx object

set p [Posting new \

 -title "Too Big to Fail” -author "John S.” -ts "05-Nov-09 10:33" \

 -tags {finance economy} \

 -comments [list \

 [Comment new -author "Walter White" -comment "Great Article!"] \

 [Comment new -author "Joe Smith" -comment "But how fast is it?" \

 -replies [list [Comment new -author "Jane Smith" –comment "scalable?"]]] \

]]

Save in MongoDB

$p save

Sample MongoDB
Interactions 1: Insert

Sample MongoDB
Interactions 2: Query and Update

... Source data-model if outside of NaviServer ...

Connect to MongoDB

nx::mongo::db connect –db tutorial

Count entries having “finance” as a tag, result is 1 with sample DB

Posting count -cond {tags = finance}

OO update: Fetch posting from MongoDB as object, update it, and save it

set p [Posting find first -cond {tags = finance}]

$p tags add wi

$p save

Optional: Lower level interface using triples to map BSON structures to Tcl lists

{tags: ”finance”, { $addToSet: { tags: “wu” }}}

nx::mongo::db update "tutorial.postings" \

 {tags string finance} \

 {$addToSet object {tags string wu}}

show updated value

Posting count -cond {tags = wu}

75

Desired View

§  Display all Postings with tags, comments and
replies using nested HTML lists:

76

 ::nx::mongo::db connect -db "tutorial”
 . . .
 if {[Posting count] > 0} {

 # Build result object containing the instance variable :postings,
 # which is a list of objects:
 set result [nx::Object new {
 set :postings [Posting find all -orderby ts]
 }]

 # Set template for result, iterating over the postings with FOREACH
 $result template set {
 Postings: <FOREACH var='p' in=':postings' type='list'>@p;obj@<p>
 </FOREACH>
 }

 # Obtain the rendered HTML output
 set html [$result template eval]
}

Counting entries, obtaining all
values, rendering output

77

Default templates
#
Posting template set {
 @:ts@: @:author@ posts: @:title@

 <FOREACH var='c' in=':comments' type='list'>@c;obj@
 </FOREACH>
 tags: @:tags@

}

Comment template set {
 @:author@ comments: '@:comment@'
 <FOREACH var='r' in=':replies' type='list'>  

 reply: @r;obj@  
</FOREACH>

}}

Templates for
“Posting” and “Comment”

Program Examples

§  Copy

 mongo-*.tcl  
 
into  
 
 /usr/local/ns/pages/  

§  and
 
 oo-templating.tcl  
 bi.tcl  
 
into
 
 /usr/local/ns/modules/tcl/

§  Make sure “mongod” is running; restart NaviServer

§  Try out in from a browser
 

http://localhost:8080/mongo-setup.tcl  
 
and look into the page source

Review of mongo-*.tcl

§  Good:
§  Preserved all “good” properties from last examples
§  High-speed database access and persistence
§  MongoDB is fully compliant with the dynamic object model of

XOTcl, NX
§  Uses MongoDB specific connection pooling
§  Timings quite good, study where time is spent on page
http://localhost:8080/mongo-edit.tcl

§  Limitations:
§  No language support for configurable write concerns

(just via connection URI)
§  Many details can be improved (e.g. nicer editing, etc.)

Project Assignment

•  Turn Business Informer example implementation in
NX into a “query and answer” application (specialized
Forum)
•  Start from business informer data model and files
•  Use problem-specific names (adp-files, data model)
•  Use features such as tags, ratings, up-voting to implement

social feedback (let you inspire by stackoverflow.com)
•  Bootstrap Interface
•  Add User-management with cookies (using ns_cookie,

http://naviserver.sourceforge.net/n/naviserver/files/ns_cookie.html)

Literature

§  Eric A. Brewer. Towards Robust Distributed Systems, Keynote at the

Symposium on Principles of Distributed Computing PODC, (2000)

•  Werner Vogels. 2008. Eventually Consistent. Queue 6, 6 (October 2008),
14-19

•  Decandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.;
Pilchin, A.; Sivasubramanian, S.; Vosshall, P.; Vogels, W. (2007). "Dynamo:
Amazon’s Highly Available Key-value Store". Proceedings of twenty-first ACM
SIGOPS Symposium on Operating Systems Principles - SOSP '07. p. 205-220

•  Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. CACM 51, 1 (January 2008)

